Extensions 1→N→G→Q→1 with N=C22 and Q=S3×C20

Direct product G=N×Q with N=C22 and Q=S3×C20
dρLabelID
S3×C22×C20240S3xC2^2xC20480,1151

Semidirect products G=N:Q with N=C22 and Q=S3×C20
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×C20) = C20×S4φ: S3×C20/C20S3 ⊆ Aut C22603C2^2:(S3xC20)480,1014
C222(S3×C20) = C5×Dic34D4φ: S3×C20/C5×Dic3C2 ⊆ Aut C22240C2^2:2(S3xC20)480,760
C223(S3×C20) = C20×C3⋊D4φ: S3×C20/C60C2 ⊆ Aut C22240C2^2:3(S3xC20)480,807
C224(S3×C20) = C5×S3×C22⋊C4φ: S3×C20/S3×C10C2 ⊆ Aut C22120C2^2:4(S3xC20)480,759

Non-split extensions G=N.Q with N=C22 and Q=S3×C20
extensionφ:Q→Aut NdρLabelID
C22.1(S3×C20) = C5×D12.C4φ: S3×C20/C5×Dic3C2 ⊆ Aut C222404C2^2.1(S3xC20)480,786
C22.2(S3×C20) = C5×C8○D12φ: S3×C20/C60C2 ⊆ Aut C222402C2^2.2(S3xC20)480,780
C22.3(S3×C20) = C5×C23.6D6φ: S3×C20/S3×C10C2 ⊆ Aut C221204C2^2.3(S3xC20)480,125
C22.4(S3×C20) = C5×C12.46D4φ: S3×C20/S3×C10C2 ⊆ Aut C221204C2^2.4(S3xC20)480,142
C22.5(S3×C20) = C5×C12.47D4φ: S3×C20/S3×C10C2 ⊆ Aut C222404C2^2.5(S3xC20)480,143
C22.6(S3×C20) = C5×C23.16D6φ: S3×C20/S3×C10C2 ⊆ Aut C22240C2^2.6(S3xC20)480,756
C22.7(S3×C20) = C5×S3×M4(2)φ: S3×C20/S3×C10C2 ⊆ Aut C221204C2^2.7(S3xC20)480,785
C22.8(S3×C20) = Dic3×C40central extension (φ=1)480C2^2.8(S3xC20)480,132
C22.9(S3×C20) = C5×Dic3⋊C8central extension (φ=1)480C2^2.9(S3xC20)480,133
C22.10(S3×C20) = C5×C24⋊C4central extension (φ=1)480C2^2.10(S3xC20)480,134
C22.11(S3×C20) = C5×D6⋊C8central extension (φ=1)240C2^2.11(S3xC20)480,139
C22.12(S3×C20) = C5×C6.C42central extension (φ=1)480C2^2.12(S3xC20)480,150
C22.13(S3×C20) = S3×C2×C40central extension (φ=1)240C2^2.13(S3xC20)480,778
C22.14(S3×C20) = C10×C8⋊S3central extension (φ=1)240C2^2.14(S3xC20)480,779
C22.15(S3×C20) = Dic3×C2×C20central extension (φ=1)480C2^2.15(S3xC20)480,801
C22.16(S3×C20) = C10×Dic3⋊C4central extension (φ=1)480C2^2.16(S3xC20)480,802
C22.17(S3×C20) = C10×D6⋊C4central extension (φ=1)240C2^2.17(S3xC20)480,806

׿
×
𝔽